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SUMMARY

In this paper we analyse numerical models for time-dependent Boussinesq equations. These equations arise
when so-called Boussinesq terms are introduced into the shallow water equations. We use the Boussinesq
terms proposed by Katapodes and Dingemans. These terms generalize the constant depth terms given by
Broer. The shallow water equations are discretized by using fourth-order finite difference formulae for the
space derivatives and a fourth-order explicit time integrator. The effect on the stability and accuracy of
various discrete Boussinesq terms is investigated. Numerical experiments are presented in the case of a
fourth-order Runge-Kutta time integrator.
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1. INTRODUCTION

Boussinesq equations describe the behaviour of fairly long, low-amplitude waves in flow models.
The starting point is the shallow water model where terms are added which take into account the
effects of wave dispersion. If we define the characteristic parameters

LAY 4
u= 27'C s 8'_h,

where h is the depth function and k and a are respectively the spatial frequency and amplitude of
the waves, then these terms are O(u + &) with u and ¢ of the same order of magnitude. The order-u
and order-¢ terms are respectively related to the frequency and amplitude dispersion.

For very low frequencies O(u)-terms are negligible so that the Boussinesq model reduces to the
shallow water model, while for very-low-amplitude waves the O(¢)-terms are negligible, leading to
the linearized wave equations. If both types of terms are neglected, then the wave equation with
constant celerity for all waves is recovered.

In practice, Boussinesq models represent a significant improvement over shallow water models
because they allow (moderate) curvature of the free surface, non-depth-averaged velocities, non-
hydrostatic pressure and wave dispersion.
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In this paper we are concerned with the case where u and ¢ are of magnitude at most &, so that
frequencies and amplitudes satisfying the conditions

4un? 72 h
= RN, S —_ < _—_
k \/( % )S sh a ah\so 03]

should be described accurately by the Boussinesq models to be used. Frequencies less than 1/h
(say) will be considered as the relevant frequencies.

In our analysis we concentrate on one-dimensional Boussinesq models, but the analysis can
straightforwardly be extended to two-dimensional models. Consider the equations

0(u)_ 0 go/ox \ [ u o (u
5;<2>__<25/6x+L'1(5/6x)h 0 ><Z>_ua<z>’ (2a)

where z is the free surface elevation, u is the horizontal velocity at the free surface, h is assumed to
be independent of ¢, g is the acceleration due to gravity and L is a linear spatial differential
operator characterizing the particular form of the Boussinesq approximation. If L equals the
identity operator, then (2a) reduces to the one-dimensional shallow water equations. One of the
forms of the operator L proposed by Katopodes and Dingemans' for describing Boussinesq
models reads

1 8 1, 02

2hax2h+6h peR (2b)
This operator generalizes the operator used by Broer? for the constant depth case; i.e. if h does not
depend on x, then the Boussinesq model defined by (2) reduces to the model derived by Broer.

Since we are mainly interested in the low-frequency range of the solution space of (1), the
operator L defined by (2b) may be considered as a perturbation of the identity operator; i.e. the
norm of the operator 1 —L is small on the space of low frequencies. This property will become
important in designing numerical approximations to L.

Following the method-of-lines approach, we replace the spatial domain by a discrete set of grid
points and approximate the continuous functions u, v, z and h on these grid points by grid
functions U, V, Z and H. Furthermore, the differential operator d/0x is approximated by difference
operators D, which are defined on the space of grid functions. In this paper we shall assume that
the boundary conditions are given by periodicity conditions and that the spatial grid consists of
uniformly spaced grid points jAx.

Let L* denote a discretization of L; then we are led to a semidiscretization of (2) given by the
system of ordinary differential equations (ODEs)

d(U\ _ 0 gD, \(U U .
5(2)‘_<ZD,+(L*)—IDxH 0 )(z)"UD"<z)‘ 2%)

Since one usually wants high-order discretizations in Boussinesq models, the discretization
stencils defining D, are rather large. In fact, in this paper it is assumed that a fourth-order
discretization both in time and space is desired. As a consequence, the blocks in the Jacobian
matrix associated with the semidiscretization (2*) contain a considerable number of non-zero
diagonals. If implicit time integrators are used, then such Jacobian matrices imply a rather
computationally intensive linear algebra problem for solving the implicit relations. In one spatial
dimension this linear algebra problem does not prevent us from using implicit integrators;
however, in two spatial dimensions explicit time integrators seem to be more attractive. Since it is

L=1
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our aim to extend the results of this study to the two-dimensional case, we shall use explicit time
integration methods.
In the actual integration of the system (2*) by explicit ODE solvers, one or more right-hand-
side evaluations of (2*) are needed in each integration step. Hence in each step the quantity
B:= (L*)"'D ,HU

is to be computed, so that in each step we have to solve the equation

L*B=D,HU. 3
The most obvious definition of L* is the difference operator
L¥=1I—4HDH +iH*D, 4)

where D denotes a discretization of the operator §2/0x2. (However, we will see that the
corresponding semidiscretization (2*) becomes easily unstable for negative values of the eleva-
tion, so that alternative discretizations are desirable; see Section 5.) Putting aside the particular
discretization we use for L, we will always be faced with the problem of solving equation (3), in
spite of our restriction to explicit time integrators. As already observed, in one spatial dimension
this is not a severe problem. However, in two spatial dimensions it requires special attention.
In the remainder of this paper the following aspects will be discussed. Section 2 deals with the
stability of the continuous problem (2) and of the semidiscretization (2*). In Section 3 the stability
condition associated with explicit integration methods is derived. Sections 4 and 5 respectively
treat the difference operators D, and the discretization of the operator L. Finally, in Section 6 we
present numerical results for the case of the standard fourth-order Runge—Kutta time integrator.

2. STABILITY

Before selecting an ODE solver for integrating the system (2*), we investigate the stability
properties of both the continuous problem (2) and the semidiscretization (2 *). This will be done in
the case where the depth function  is constant and with respect to the function space spanned by
complex exponentials.

2.1. Stability of the continuous problem

We shall investigate the local stability of problem (2) by substituting continuous harmonic data

(’;) = a(t)exp(ikx) ©)

into (2) at some fixed point x in the domain of definition (this is often called the method of ‘frozen
coefficients’). Here k is the real-valued spatial frequency and a does not depend on x. We readily
find that (5) satisfies (2) if a(t) is a solution of the ODE

d . 0 gk .
a;a——Aa—aa, A'_1<[z+h/A(L)]k >, o= iuk, 6)

where u and h are defined at the point x and where for any linear operator M, A(M) denotes an
eigenvalue of M. The cigenvalues of L can be expressed in terms of k, i.e.

2
(a—>h2 =1+$k?h.

1
L)=1-24
ML) 0x?

3
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The condition for (local) stability of the system (6) requires that the eigenvalues of the matrix
— (A + ol ) are located in the non-positive half-plane. The non-trivial eigenvalues of this matrix

are given by
H—A—al)= —i[uki\/<gk2h—%§’“—))]. ™

The values of 1/A(—A—al) are called time constants and depend on the frequency k.
Thus we have stability if the time constants are located in the non-positive half-plane, i.e.
Rei(—A —al)<0. We shall say that the problem (2) is dissipative if ReA(—A —al)<0 and
zero-dissipative or conservative if Rel(—A —al) vanishes. The following theorem is now
immediate.

Theorem 1

If and only if h> —zA(L), then (6) is stable and at the same time zero-dissipative. O

From this theorem it follows that for negative z we only have stability with respect to spatial
frequencies satisfying the inequality —zk?<3(h + z)/h?. For positive z this condition is always
satisfied, but for negative z it prescribes an upper bound for the spatial frequencies. Recalling that
the range of relevant frequencies is bounded by 1/h, we conclude that the relevant frequencies
always satisfy the above stability condition.

It may be of interest to express the stability condition of Theorem 1 in terms of the character-

istic parameters ¢ and u introduced in Section 1. Introducing the wave amplitude a: =|z|,,,, we
find

h—a 3(1—¢g) a
2 < — —
<3 ah? eh? =
and substitution of
4un?
k? = W

yields
8un? 3(1—¢)
—3S—33
h? eh?
so that the Boussinesq model (2) is stable if the solution space is restricted to frequencies for which
eu is bounded by 3(1 —¢)/8n2 ~ 3/80.
2.2. Stability of the semidiscrete problem

Following the above approach, we insert into the semidiscretization (2*), at a fixed grid
point x, the harmonic data

U . T «
<Z> = a(t)exp(ikx;), 0<k< Ax (5%)

Here x; runs through the grid points and a again only depends on ¢. The frequency k is restricted
to the interval [0, n]/Ax because the grid cannot ‘resolve’ higher frequencies. In practice,
accurate solutions can only be obtained for frequencies contained in an interval which is an order
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of magnitude smaller, say [0, 0-2]/Ax. As stated in Section 1, the relevant frequencies for the
Boussinesq model range from zero to 1/H, so that 1/H should be less than 0-2/Ax, i.e. Ax<H/5.

In the following analysis it is assumed that the grid functions exp(ikx;) are eigenfunctions of
the operators D, and L* with eigenvalues &, and 1(L*) respectively. Then the analogue of (6)
becomes

d 0 go
—_ = — *q ¥ A*:: * *:= . *
32 A*a—a*a, ([Z+H/1(L*)]5x 0 ), a*=Ué, (6*)

The condition for stability of the system (6*) requires that A(—A* —a*I) lies in the non-
positive half-plane. By ‘freezing’ the coefficients in (6*), we find that the non-trivial eigenvalues of
—(A* + a*I) are given by ’

AM—A*—oa*])= —Us, + \/(g&,f

H+Zl(L*)> 7

A(L*)

As for the continuous problem, we say that the semidiscretization (2*) is dissipative if
Rel(—A*—a*I)<0 and zero-dissipative or conservative if ReA(—A* —a*I) vanishes. Let
p(L¥) denote the spectral radius of L*; then the analogue of Theorem 1 becomes as follows.

Theorem 1*

If the eigenvalues of the discretization D, are purely imaginary and if the eigenvalues A(L*) are
positive and satisfy the condition H > — Zp(L*), then and only then is the semidiscretization
(6*) stable and at the same time zero-dissipative. O

The condition H 2 —Zp(L*) shows that in the case of negative elevation waves the quantity
1/p(L*) may be interpreted as an upper bound for |Z/H|. Since |Z/H| is bounded by the
characteristic parameter e, we conclude that 1/p(L*) should not be less than e. In order to see its
implications, we consider the case where L* is defined by (4). Then the eigenvalues of L* are

A(L¥)=1-3A(D)H>.
Assuming that D has negative eigenvalues, we find
p(LE) =1+3p(D)H>. ®

Since p(D) is usually extremely large, we see that in the case of large negative elevation waves the
magnitude of 1/p(L*) is easily less than &. (We recall that the order of magnitude of ¢ and u is at
most g, so that p(L*) should not exceed 50.) In Section 5 we return to the problem of discretizing
the operator L by better-conditioned difference operators than the operator L} defined in (4).

2.3. Artificial stabilizing terms

In Section 2.2 we have seen that the system (6*) is stable if and only if the eigenvalues of D, and
L* satisfy the conditions of Theorem 1* and that the corresponding time constants lie on the
imaginary axis which separates the regions of stability and instability. This ‘marginal’ stability
property of the semidiscretization causes a numerical integration process to become easily
unstable. Therefore it may be necessary to stabilize the system (2 *) by adding artificial stabilizing
terms.
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2.3.1. Artificial diffusion. The most simple way to achieve additional stabilization is the
introduction of an artificial diffusion term into (2*).

d(U\ _ 0 gD.\[U (U
&(z>_"<ZDx+(L*)—1DxH 0 )(z)'[UD"_d(Ax) D]<z>’

where d and p are positive and D denotes the discretization of the operator 82/0x2. As a result of
this term the system is changed by a pth-order perturbation. The time constants are now given by

M—A*—a*I)+AD, Ad:= d(Ax)?A(D). (7)

Assuming that the conditions of Theorem 1* are satisfied, these values are located on a curve in
the left half-plane and no longer on the imaginary axis. Since A2 is negative, the semidiscretization
has become dissipative.

2.3.2. Fischer-type semidiscretization. An alternative way to introduce dissipation is the
following: let S denote the state vector (U, Z)T and write (2*) in the compact form

d

—S=—-08.

dt Q

Furthermore, let the matrix operator Q be split according to Q = T+ (Q — T), where T is the
strictly lower triangular part of Q, and define the operator P:= I + q(Ax)? T, where g and p are
positive. Instead of the semidiscretization (2*) we now consider the preconditioned semi-
discretization

%S = —P710S = —[I+4T(Ax)*] ' QS.

Since P! is triangular, the evaluation of the right-hand-side function — P~ * QS does not require
more computational effort than that of —QS. Evidently, this preconditioned system is an
O[(Ax)?]-perturbation of the original system.

The method used by Fischer? for solving the shallow water equations can be interpreted as the
explicit Euler method applied to the above preconditioned semidiscretization with p = g = 1 and
Ax = At. Fischer showed that the resulting method is conditionally stable whereas application of
explicit Euler to the original semidiscretization would lead to an unconditionally unstable
method. The reason is of course that explicit Euler possesses an empty imaginary stability
interval. As we shall see below, the preconditioning trick forces the time constants of the
semidiscretization into the left half-plane, where explicit Euler has a non-empty stability region.
Instead of using explicit Euler, one may use any ODE solver for integrating the preconditioned
semidiscretization, We shall call this particular type of semidiscretization Fischer-type semi-
discretization.

It is easily verified that the time constants A(— P~ 'Q) associated with the Fischer-type
semidiscretization are the roots of the equation

H+ ZA(L*)

(A4 a*)? +yg(Ax)PA+7y =0, a*=US§,, yi= —gd? )

Writing A(—P~'Q) = A(— A* —a*I) + AL, we obtain

o1 _ Y9(Ax)PA(A* +a*]) "
AM—P71Q)=1+A4, Ad:= - AN + 79T (7"
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It can be shown that Re(AZL) and hence Reid(—P~1(Q) is negative, so that the Fischer-type
semidiscretization is dissipative. The advantage of the above preconditioning over adding
artificial diffusion lies in its lower computational costs.

3. STABILITY OF EXPLICIT TIME INTEGRATORS

It has already been observed that we shall use explicit time integration methods for the
integration of the semidiscrete system (2*) in order to avoid the rather computationally intensive
linear algebra involved in integrating (2*) by implicit methods. We also recall that we cannot
completely avoid the solution of implicit equations because we always have to solve the system (3)
defining the quantity B.

3.1. Stability condition of the zero-dissipative semidiscretization

If the conditions of Theorem 1* are satisfied, then the time constants of the system of ODEs
(2*) are purely imaginary and (2*) is therefore stable. Hence the integration process used for
integrating (2*) is (linearly) stable if its time step At satisfies the stability condition

__ B
p(A* + a1y

where p is the imaginary stability boundary of the time integrator used. This leads us to the
following theorem.

At <

Theorem 2

If the time integrator chosen for integrating (2*) has imaginary stability boundary § and if the
discretization D, has imaginary eigenvalues, then a sufficient condition for linear stability is

At 4 O

pDNUI+/ (gp(DIL(L*)" ' H+Z])

We remark that this condition on At reduces to the familiar stability condition for shallow
water models if L*¥=1. In order to get some insight into the actual step size limitations of this
condition, we consider the case where L* has eigenvalues greater than or equal to unity, so that
Z<A((L*) " (H+ZL*)<H+Z. Hence

p(DIL*Y ™ H(H+ZL*)<p(DY) p (L*) ™' (H+ZL*)=p (D)) Max{H+Z, | Z|}.

Thus we have the following corollary of Theorem 2.

Corollary

If the eigenvalues of L* are greater than or equal to unity, then a sufficient condition for linear
stability is

B
M S DT+ JgMax(B+ Z1ZIDT"

Notice that the operator L* does not appear in this condition. If the eigenvalues of L* are less
than unity, then p((L*)"!(H+ZL*))>H+Z, leading to a smaller maximum time step.
Furthermore, we should bear in mind that the condition of this corollary may be more restrictive
than that of Theorem 2.

O
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Let us present the time step condition of the corollary in the form
pAx
CLIUI+/(gMax{H + Z,|Z|})]’

where C, is a constant depending on the particular discretization formula used. By a judicious
choice of the discretization D, the constant C, can be minimized, thereby relaxing the stability
condition. In a typical case we have

[Ul=1ms™%, Z=44m, H=10m, g=10ms 2 Ax =2m,

At < Cyi= Axp(D,), ©)

so that the stability condition becomes

28

At < ——.
13C,

3.2. Stability condition for the dissipative semidiscretization

In the case where artificial diffusion is added to the dissipative semidiscretization (2*) the
stability condition (9) is changed to (see Section 2.3.1)
BAx
JLACy(Ax)P 71+ {C[IU| +./(gMax{H + Z,|1Z|)]}*)’

where B is the radius of the half-circle that can be inscribed in the stability region of the ODE
solver used. On substitution of the numerical values given above we obtain

BAx
V{[dCo(Ax)P71 ]2 + (13C,)*}

showing that for p = 4 and Ax < 2 the value d =  (say) seems to be suitable in the sense that the
denominator in (9') is only slightly larger than that of (9) (here we assume that the constants C,
and C,, do not differ much in magnitude). We remark that the introduction of artificial diffusion
does not relax the stability condition, but it improves the stability behaviour of the integration
process because of dissipation of the higher frequencies.

At < Cp=p(D)(Ax)%,  (9)

At <

4. THE OPERATOR D,

We shall use discretizations of the symmetric form
1 - , .
- s J — -J
D,: A% j;o d;(EL—E/). (10a)

Here d; are scalar weights and E, is the shift operator in the x-direction, i.e. for any function g(x)
we define

E.g(x, y)=g(x + Ax). (10b)
It is sometimes convenient to present the difference operator D, by so-called stencils (or
molecples). For example, for m = 3 such a stencil is given by

1

Dx=—A_x}-d3 ’_dz —dl 0 dl dz d3|.
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We shall call m the dimension of the discretization stencil. For the general difference operator of
the type (10) we have the following theorem.

Theorem 3
The following assertions hold.
(a) The eigenvalues of D, are purely imaginary.

(b) The spectral radius of D, is given by p(D,) = C,/Ax, where

C.<2el, ()= 3 dysinp) )

with || + || denoting the maximal norm with respect to all values of p and q.
(c) The discretization (10) is fourth-order-accurate if

,So 2jd; =1, j§0j3dj=0. (12)
Proof. (a) Since
E.exp(ikx;) = e exp(ikx;), p:=k,Ax,
we find that
D, exp(ikx;) = &, exp(ikx;), d, =0,(p)= 321; ,S‘o d;sin(jp), (13)

showing that exp(ikx;) is an eigenfunction of D, with purely imaginary eigenvalues J,.
(b) This estimate is immediate from the expression for d,.
(c) Let g(x) be a sufficiently differentiable function; then we can write

D.g(x) = % X(Ax%) g(x), X(x,y)=2 i:o djsml;(ix)_

It is straightforwardly verified that
X(x)= ) (2 +4j3x*)d; + O(x*),
j=o0
from which the theorem is immediate. O

By means of this theorem, fourth-order difference operators D, can straightforwardly be
constructed. However, because the actual implementation of these operators will be based on

staggered grids (i.e. the components of U and Z will be computed at distinct grid points), we shall
distinguish two special cases:

(i) m = 2, no restrictions on the weights d;
(i) m=3,d; =0if j is odd.

In the first case we deduce from Theorem 2 that fourth-order accuracy is possible for m = 2. This
leads to the conventional four-point ‘line’ discretization

1 .
Dio=rzi=ll —8 08 —1|, with C, = 137149 .. .. (14)
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On staggered grids we need discretizations of D, with m = 3 and d; = 0 if j is odd. This leads to
the conventional four-point ‘line’ discretization

D,:

=aaasll 0 270270 —1|, with C,=3. (14"

5. THE OPERATOR L*

In Section 2.2 (Theorem 1*) it was shown that the discretization L* of the operator L should
satisfy the condition H > —Zp(L*) in order to achieve stability, i.e. in the case of negative
elevation waves 1/p(L*) should not be less than the parameter ¢ characterizing the Boussinesq
model. We recall that the ‘natural’ discretization L¥ defined by (4) may lead to severe restrictions
on |Z/H|. In this section we therefore consider alternative discretizations which are in fact
approximations to L§ with reduced spectral radius. We shall discuss ‘low-frequency’ approxima-
tions to L¥ and preconditioning (or smoothing) of the operator L¥. In both cases the spectral
radius of the resulting operator L* is reduced considerably while the whole spectrum is bounded
below by unity. Of course, the defect L* — L} should be small for accuracy reasons. In order to
measure this defect, we consider the quantity

S(k):= (L* — L¥)exp(ikx;) = A(L*)— A(L¥) (15)

as a function of k. Since we are only interested in the lower frequencies, i. k in the interval
Lo, n\/ 2/5H] (see (1)), it is justified to restrict our considerations to this range of low frequencies.
Let | - || denote the maximum norm with respect to all frequencies less than k,; then we define

Alko):=||6(k)| (16)

as a measure for the-low frequency defect.

5.1. Low-frequency approximations to L¥
Consider the operator
L* = L*(w, 0):= (I + oHDH —0H*D) '[1 —4(1 — 20)HDH + (1 - 60)H*D], (17)

where » and 0 are free parameters (notice that L*(w, #) = L¥ for = 6 = 0).

First we derive an expression for the spectral radius of L*. It is readily verified that in the
constant coefficient case the eigenvalues of L* corresponding to the eigenfunctions exp(ikx) are
given by

1—(6—w+4)A(D)H?

AL =1L, = G D

so that
—(0 - 0)[M(D)H*]?
3[1 - (8 —w)AD)H?])’
where A(D) denotes the eigenvalues of the discretization of the operator 0%/dx2. Using staggered
grids, we define the operator D by the fourth-order-accurate difference formula
D= 1 |
~ 48(Ax)?

o(k) = A(L*)— A(Lg) =

10160 —-300 16 0 —1}. (18)
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We find that the eigenvalues of D are given by
A(D) = (2Ax)2d(¢), d(&)= —&—1¢2 &= 4sin®(k,Ax), (19a)

so that 0 € ¢ £ 4 and

p(D) = (19b)

4
3(Ax)*’

Because D has negative eigenvalues, the expression for A(L*) shows that A(L*(w, 8)) is bounded
below by unity if 8 —w > 0. For § — » > 0 we find

1+(0—w+3)p(D)H?  1+16(0—w+3)Q*/3 _H 20)
1+(0—w)p(D)H* ~ 1+16(0—w)Q?/3 °’ Q= '

2Ax
Next we compute the defect

p(L*) =

_ _ 0—o)LDET __ (B-o)dOQT
Alko) = 106, 000 =36~ o) AD)HT = 3T1= (0 - w)d(8)07]

Let k be less than k,; then the variable £ is bounded by 2[1 — cos(k,Ax)]. Hence, by taking the
maximum norm with respect to this range of £-values, we obtain

_|_(6-w)[d(%)Q*1 s
A(ko) = 1= (0- 0)d(z)07] | o= 2[1 —cos(2koAx)]. 21
Hence
| 46— w)(Hko)* . )
A(ky) = T4 20— w)(He| koAx — 0, (21)

showing that for the relevant frequencies k < ko, &~ 1/H the defect is bounded by
4(6 —w)/[3+6(0 —w)].
Thirdly we consider the system (3) for computing the quantity B in the case of (17):

[I-3(1—2w)HDH +1(1—60)H*D]B = (I + oHDH — 6H?D)D,HU.

In general, solving this system has the same computational complexity as that of the system
arising for L* = L¥ (w = 6 = 0). The values o = § and 6 = { seem to be of interest because B is
then explicitly defined. However, since # — w should be non-negative, this choice is excluded.
Another attractive choice which does preserve stability is w = 0 and 8 = 1, leading to

(I -3HDH)B = (I —¢H*D)D,HU.

Next we compute in the case § — w = & the spectral radius p(L*) and the defect A(k,) for a few
values of Q and k,. Furthermore, as a reference, we also list the values of p(L¥). Table I clearly
demonstrates the considerable reduction of the spectral radius by using low-frequency approx-
imations to the operator L}. Since stability requires that p(L*) should be less than 1/e (see
Section 2.2), we conclude that in the range 3 < Q < 13 the discretization L*(6, 6 — L) allows
waves with e-values as large as 0-33, whereas the discretization L¥ = L*(0, 0) allows waves with
e-values varying from 0-06 to 0-0033. However, Table I also shows that the defect in the range of
relevant frequencies is rather large and cannot be improved by decreasing Ax.
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Table 1. Spectral radius and defect of the operator L* defined by (17) for 6 —w =

Q = H/2Ax: 3 5 7 9 11 13 ©
p(L¥) 170 454 881 1450 2161 3014 o
p(L*) 278 291 2:96 297 298 299 30
A(n\/2/5H) 003 003 003 003 003 003 003
A(1/H) 005 005 005 005 005 005 005
A(2/H) 053 053 053 053 053 053 053

Finally we derive the time step condition according to Theorem 2 in the case § — w = § with D,
defined by (14’). We deduce from (13) that

A(D3) = (8,)* = —(2Ax)*E(1 +45¢)%
where ¢ is defined as before. A comparison with 1(D) defined in (19a) reveals that

MDYH-AMD) &
AD)  48(12+¢&)
showing that we may replace 4(D2) by A(D) without introducing large errors. Hence
- _ 1—A(D)H?/6
Dz *) -1 MM AD(L* 1 L*) = R T A i
AMDAL*) YN H+ZL*)=AMD(L*)" ' (H+ ZL*)) MD)(I—A(D)HZ/2H+Z

It can be shown that this expression is monotone in A(D), so that it follows from (19b) that

2 e o 4 (2H2+9(Ax) 4

Upon substitution into the condition of Theorem 2 we obtain
6pAx
Ar < .
TNU|+4,/[g(H +3Z)]
We remark that the Corollary of Theorem 2 would result in the more restrictive condition
At < 68Ax .
7\U|+7/(gMax{H + Z,|Z|})

(22)

(22)

5.2. Preconditioning of L}

The preconditioned discretizations of this subsection possess a smaller defect than those of the
preceding subsection but at the cost of larger p(L*)-values.
Consider the discretization

H
2Ax’
where q is a free parameter and Dy is a difference operator. The system (3) that has to be solved in
each call of the right-hand side of the semidiscretization (2*) now assumes the form

LB = (1+4Q*Ds)D,HU, (24)

L* = SL%, S=(I+qQ*Ds)"", Q= (23)
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showing that the computational complexity is hardly increased by introducing the precondi-
tioner S.

Let the operator D be defined by the fourth-order line molecule given by (18) and let Dg be
defined by

Dg=1la,0a,010a,0a, | (25)

The eigenvalues of D (with respect to the eigenfunctions exp(ikx)) are given by
A(D) = (Ax)"2d(¢), d(&)= — (& +15¢%), ¢=2[1—cos(2kAx)]. (26)

Hence the eigenvalues of L* can be expressed as

1-3d(8)Q* _ 1+3(£+15¢%)Q?

AL*) = = < E<4, 27
) = 1D = T+aadgo? > 0S°<* @7
and the defect function becomes
—qi(Ds)0?
sy = —IMUDIL 1y sy wengn,

"~ 1+4A(D5)Q?
where
A(Ds) = (2(11 + 202 + 1) +(_al - 4a2)§ + azéz.

Suppose that we choose the parameters in (25) such that the first two terms in A(Dg) vanish,
ie.a; = —%and a, = %; then

Ds=1410-4060 —40 1,
36 +(12¢ +¢2)0° —aQ
36 + 6q¢2Q7 6+ qé2Q?

From these expressions it can be derived that A(L*) is never less than unity if g assumes values in
the range [4, 5] and that in this range of g-values the magnitude of p(L*) is minimized for q = %.
Introducing the new variable x = £Q, we may write

36 + 12xQ + x2 —2x2
BTV 4Qx2 . O(k) = o573 (14330 +36x%), 0< x<4Q. (28)

A(L*) = o(k) = 3(E+1:89)0%], 0<i<4

ML*) =

For larger values of Q the spectrum function A(L*) behaves as 3xQ/(9 + x2), which assumes its
maximum at the point x = 3, so that p(L*) ~ Q/2. From this result the analogue of Table I
becomes Table II.

Table II. Spectral radius and defect of the operator L* defined by (23) and (25) with

a=—-%a,=%tandq=%
Q= H/2x: 3 5 7 9 1 13 %
o(L¥) 170 454 881 1450 2161 3014 o
p(L*) 217 315 414 514 606 711
A(z/2/5H) 001 0003 0002 0001 0001 0001 O
A(1/H) 016 0006 0003 0002 0001 0001 O
A(2/H) 036 015 008 005 0034 0024 0
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Finally we derive the stability condition according to Theorem 2. From (28) we obtain in terms
of x

2 4 2
AMD[(L*) T H+Z]) = —(Ax)™> (—3 - )<36 ji;xg"+ - H+Z),

which assumes its maximum value at x = 4Q. Hence p[(L*)™'] ~ 1 and Theorem 2 yields the
same condition as stated in the Corollary, i.e. condition (22').

6. NUMERICAL EXPERIMENTS

In order to test the theory developed in this paper, we add to the right-hand side of equation (2a)
some source function such that a prescribed function is identical to the exact solution. This
enables us to determine the accuracy of the numerical solutions. Let us first rewrite (2a) in the
form

0 ( u )_ 0 go/ox\ {u u(d/0x)u
ot\Lz)  ~\Lzd/ox+(8/ax)h O ) z) \Lu(d/ox)z )’
Then, by introducing the source function s(x, t), we obtain
ofu )_ 3 0 gd/0x\ {u u(0/0x)u si(x, 1) 29
ot\Lz)  \Lzd/ox+(8/ox)h O 2) " \iw@ron)z ) "\ syx ) )

By prescribing the exact solution u(x, t) and z(x, t), we deduce from (29) that the corresponding
source function s(x, t) is defined by

0 0 0 0 0 0
sl(x,t)=au+g5;z+u£u, sz(x,t)=L(Ez+5;uz>+$hu. (30)
In our numerical experiments we always prescribed the exact solution
. 4 2
u(x,t) = —sin(cx?)sin(dt), z(x, t) = cos(cx?) cos(dt), c= 7;, d= TN, (31)

where [0, b] is the spatial domain and [0, T'] is the integration interval.
As a consequence of the introduction of the source function s(x, t), we now have to solve in
each integration step the equation (cf. (3))

L*B=D.HU-S,, (32)

where S, is the discretization of s,(x, t).

Equation (29) was discretized using the staggered grid difference approximation (14’) on a
uniform grid with mesh size Ax. The operator L defined in (2b) was discretized according to
formula (17) with @ = 0 and 8 = § and according to (23) and (25) witha, =%,a, =tand g = %.
The time integration was performed using the standard fourth-order Runge—Kutta method with
constant step size At.

Since the imaginary stability boundary of the standard Runge-Kutta method is given by 2,/2,
the stability conditions (22) and (22') take respectively the form

124%./2 A< 12Ax./2
7IUI+4./[g(H +3Z)]’ STUI+1J[g(H+2)]

At < 33)
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In view of Theorem 1 *, there is an additional stability condition reading
H> —Zp(L*), (34

where p(L*) is given in Tables I and II depending on the discretization used for L.
In the tables of results we have listed the accuracy obtained at the end point ¢ = T. The

accuracy is measured by the number of correct decimal digits, i.c. by writing the elevation error in
the form

|Z(x;, T)—z(x;, T)| = 1074, (35)

6.1. Constant depth function

In our first test the following input data were used:

domain of definition 0 < x < b:= 1000, 0<t < I=60;

initial values u(x,0) =0, z(x, 0) = cos(cx?);

boundary values u(0,t) = u(b,t) =0;

coefficient functions g =981, h(x) = 10;

source function si(x, t) = —sin(cx?)[(d + 2gcx) cos(dt) — 2cx cos(cx?) sin?(dt)],

s5(x, t) = —sin(dt){(d + 2hcx)cos(cx?) + 2cx[cos?(cx?)
—sin?(cx?)] cos(dt)—2cdh?[sin(cx?) + 2cx? cos(cx?)]
—18¢2xh?[3 cos(cx?)sin(cx?) + 2¢x?[cos(cx?)

—sin(cx?)]cos(dt)};
mesh size Ax = 1.

For these data we found that the operator L} leads to instabilities irrespective the value of At.

The reason is that the stability condition (34) is violated. However, when using the operators
defined by (17) and (23), (25), this condition is always satisfied; hence the step size condition (33)

Table II1. Values of the number of correct digits of Z at T = 60 for discretization (17) with w = 0 and

0=1

At x = b/8 x=2b/8 x=3b/8 x=4b/8 x=5b/8 x=6b/8 x=7Tb/8
01 2-1 32 19 1-8 19 25 1-8
02 2:1 2:8 19 1-8 19 28 1-8
03 21 2:6 19 1-8 19 36 1-8
04 2-1 24 19 1-8 19 30 1-8
05 * * * * * * *

Table IV. Values of the number of correct digits of Z at 7= 60 for discretization (23) and (25) with
=2, a,=tandg=12
4@y =3, 0, =gand g =3

At x=b8 x=2b8 x=3b8 x=4b/8 x=5b8 x=6b8 x=7b/8
01 21 32 19 18 19 25 18
02 21 28 19 18 19 28 18

03 * * * * * * *
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completely determines the stability. Since the maximal numerical values assumed by | Z| and |U|
are approximately unity, we may expect the results to be stable if respectively At < 0-32 and
At < 0-21. We obtained the resuits listed in the Tables III and IV (* indicates instability).
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